

A tutorial on principal component analysis

Rasmus R. Paulsen

DTU Compute

Based on Jonathan Shlens: A tutorial on Principal Component Analysis (version 3.02 – April 7, 2014)

http://compute.dtu.dk/courses/02502

What is your experience with Principal Component Analysis (PCA)

I never heard of PCA before this course 58% I have seen PCA mentioned before 10% I have read about PCA but never used it 12% I have used PCA a few times 19% PCA and I are practically best friends 1%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at **pollev.com/app**

Principal Component Analysis (PCA) learning objectives

- Describe the concept of principal component analysis
- Explain why principal component analysis can be beneficial when there is high data redundancy
- Arrange a set of multivariate measurements into a matrix that is suitable for PCA analysis
- Compute the covariance of two sets of measurements
- Compute the covariance matrix from a set of multivariate measurements
- Compute the principal components of a data set using Eigenvector decomposition
- Describe how much of the total variation in the data set that is explained by each principal component

- 3-

Iris data

The Iris flower data

set or Fisher's Iris data set is a data set introduced by Ronald Fisher in his 1936 paper *The use of multiple measurements in taxonomic problems*

Iris data

3 Iris types

50 flowers of each type

For each flower

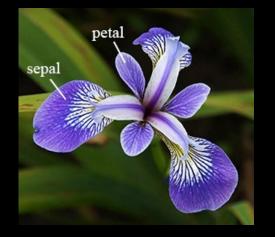
- Sepal length
- Sepal width
- Petal length
- Petal width
- We use one type as example
 - 50 measured flowers

Iris Data Matrix

One column is one flowerOne row is all measurements of one type

 $\mathbf{X} = \begin{cases} Sepal \ length_1 & \cdots & Sepal \ length_{50} \\ Sepal \ width_1 & \cdots & Sepal \ width_{50} \\ Petal \ length_1 & \cdots & Petal \ length_{50} \\ Petal \ width_1 & \cdots & Petal \ width_{50} \end{cases}$

What can we use these data for?



The measurements can be used to:

- Recognize a species of flowers
- Classify flowers into groups
- Describe the characteristics of the flower
- Quantify growth rates

Do we need all the measurements?

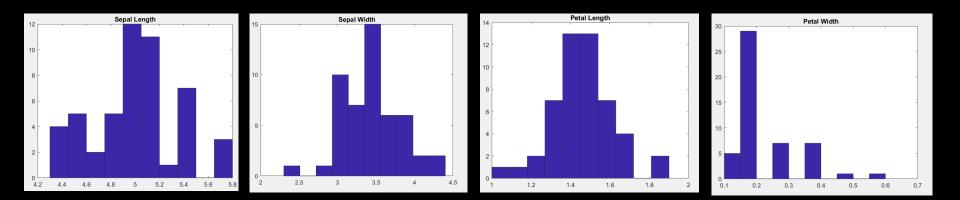
- Can we *boil down* or *combine* some measurements?

Are some measurements *redundant?*

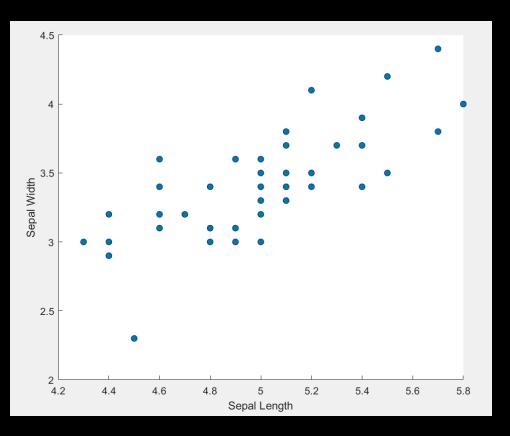
Variance

$$\sigma_{SL}^2 = 0.1242$$

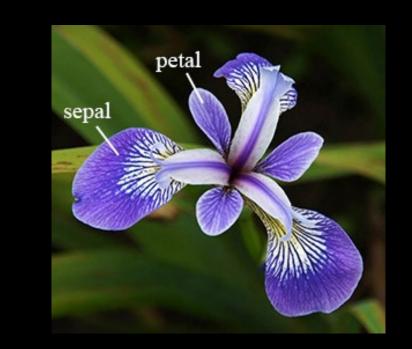
 $\sigma_{SW}^2 = 0.1437$
 $\sigma_{PL}^2 = 0.0302$
 $\sigma_{PW}^2 = 0.0111$



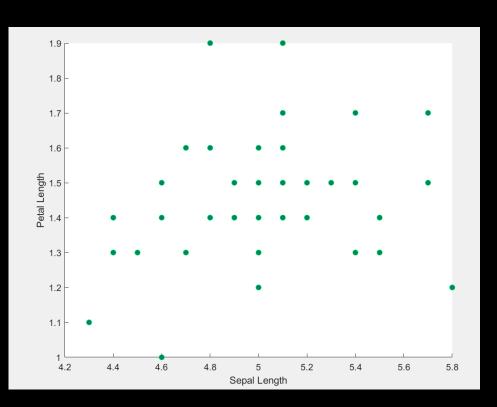
High Redundancy



Observation: We can explain quite a lot of the sepal width if we know the sepal lengths



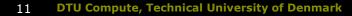
Low Redundancy



Observation: We can **NOT** explain the petal length if we know the sepal lengths

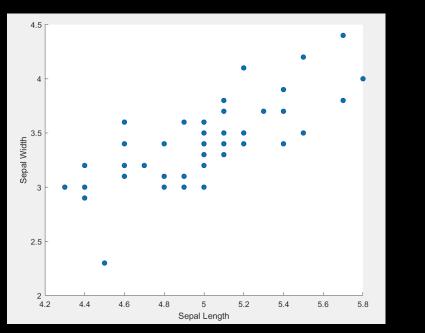
Covariance

Covariance measures the *relationship* between measurements



- 3-

High Covariance



Sepal length and sepal width

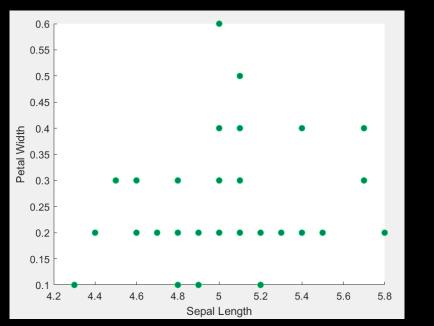
$$a_i = SL = \{5.1, 4.9 \dots, 5\}$$

$$b_i = SW = \{3.5, 3, \dots, 3.3\}$$

$$\sigma_{\rm SL,SW}^2 = \frac{1}{n} \sum_i a_i b_i = 17.2578$$

Note that in practice n-1 is used instead of n

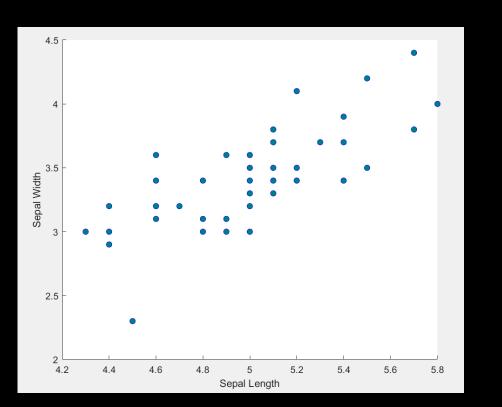
Low covariance



Sepal length and petal width

$$\sigma_{\rm SL,PW}^2 = \frac{1}{n} \sum_i a_i b_i = 1.2416$$

Vector notation for covariance



Sepal length and sepal width

$$a = SL = [5.1, 4.9 \dots, 5]$$

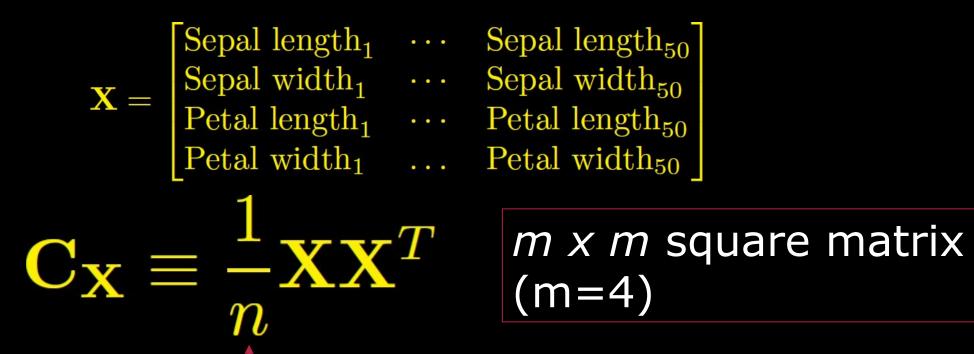
$$\mathbf{b} = SW = [3.5, 3, \dots, 3.3]$$
$$\sigma_{SL,SW}^2 = \frac{1}{n} \mathbf{a} \mathbf{b}^T$$

-3-

•

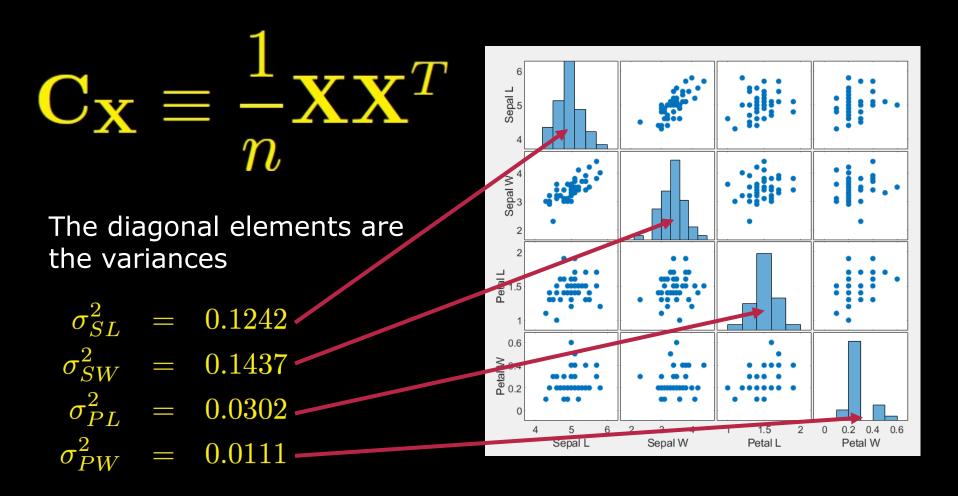
Matrix notation for covariance

 $m \times n$ matrix (m=4 and n=50)



Note that in practice n-1 is used instead of n

Covariance matrix autopsy





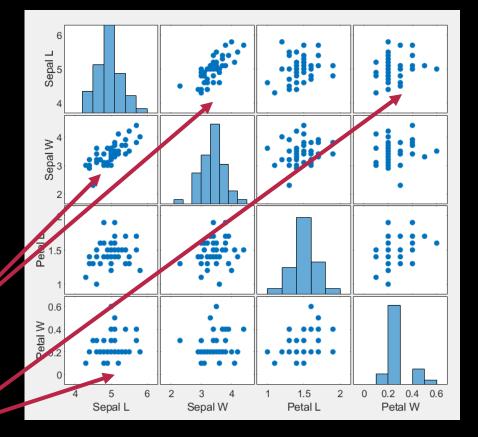
Covariance matrix autopsy II

$$\mathbf{C}_{\mathbf{X}} \equiv \frac{1}{n} \mathbf{X} \mathbf{X}^T$$

The off-diagonal elements are the covariance

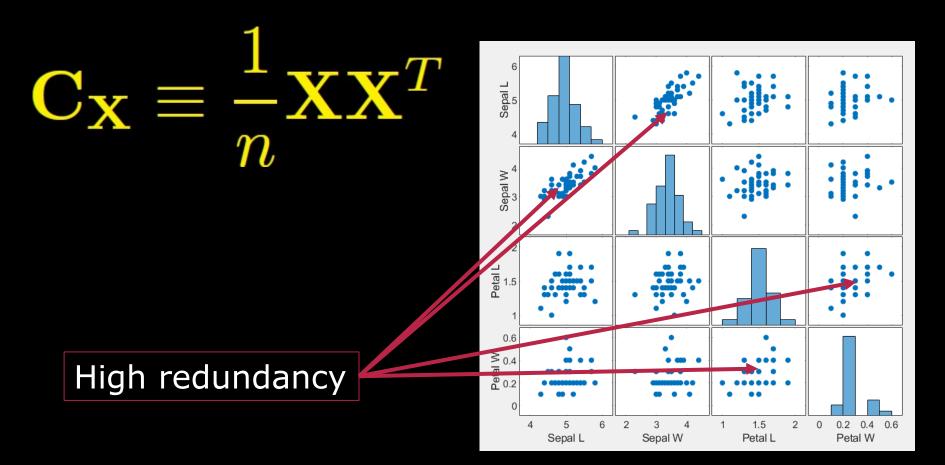
$$\sigma_{\rm SL,SW}^2 = \frac{1}{n} \sum_i a_i b_i = 17.2578$$

$$\sigma_{\rm SL,PW}^2 = \frac{1}{n} \sum_i a_i b_i = 1.2416$$



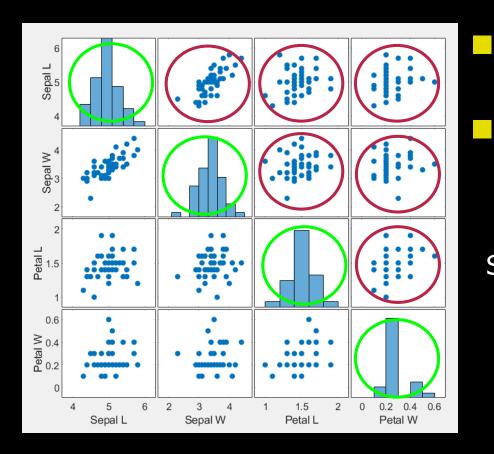
Symmetric!

Covariance matrix autopsy III



Symmetric!

Goals



Minimize redundancy

- Covariance should be small

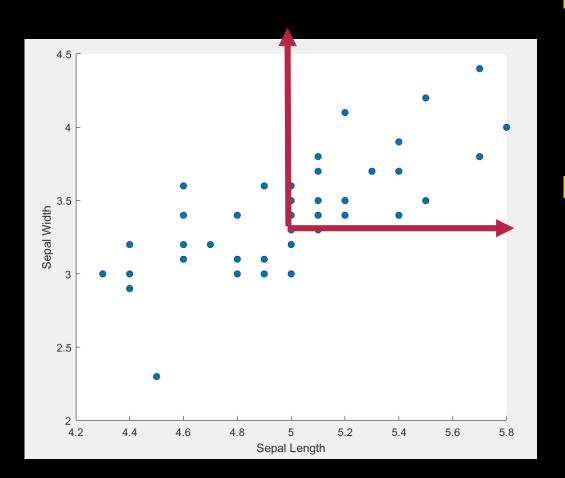
Maximize signal

- Variance should be large

Signal to noise ratio:



Changing basis

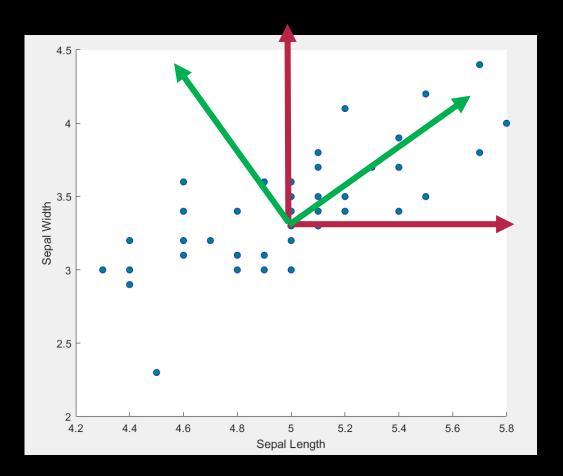


We start by subtracting the mean

- Centering data
- Red lines are the default basis

- 3-

Changing basis

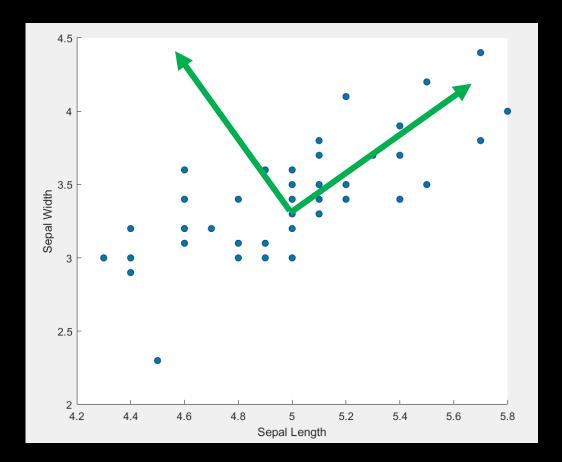


DTU

 \rightarrow

21 DTU Compute, Technical University of Denmark

Changing basis



A new basis that follows the covariance in the data

-3-

22 DTU Compute, Technical University of Denmark

Changing basis

Separ Midth

oise

Signal

Lets try to rotate the data – for visualisation -3-

40

4.4

4.6

4.8

Sepal Length

5.2

5.4

5.6

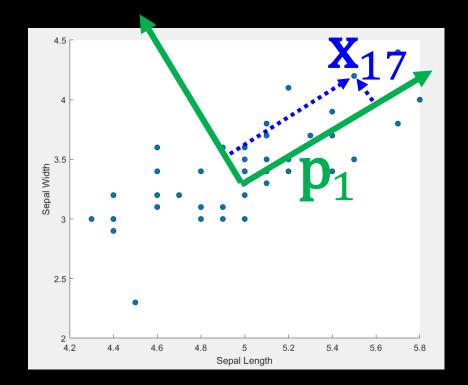
5.8

Changing basis

Separ Mioin 4.0 4.4 4.6 4.8 Sepal Length 5.2 5.4 5.6 5.8

Finding the measurement values in the new basis

25



The dot product projects a point down to a new axis

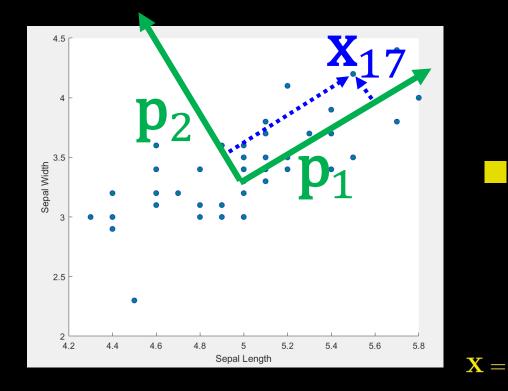
$\mathbf{x}_{17,\text{new}} = x_{17} \cdot p_1$

- 3-

DTU Compute, Technical University of Denmark

4

Changing basis



The dot product projects a point down to a new axis

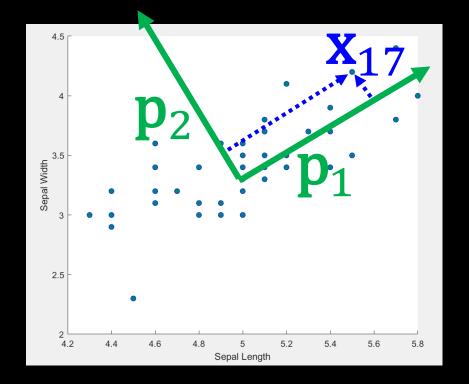
$\mathbf{PX} = \mathbf{Y}$

\mathbf{P}_1 p1 and p2 are the rows of P

 $\begin{bmatrix} \text{Sepal length}_1 \\ \text{Sepal width}_1 \\ \text{Petal length}_1 \\ \text{Petal width}_1 \end{bmatrix}$

26 DTU Compute, Technical University of Denmark

Changing basis

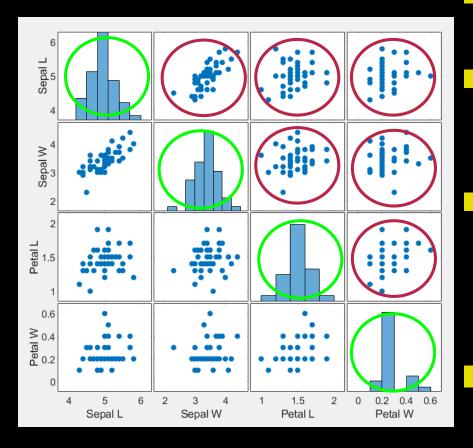


The dot product projects a point down to a new axis

$\mathbf{PX} = \mathbf{Y}$

Here Y contains the new coordinates/measurements per sample

Goals



Minimize redundancy Covariance should be small Maximize signal

- Variance should be large

Transform our data

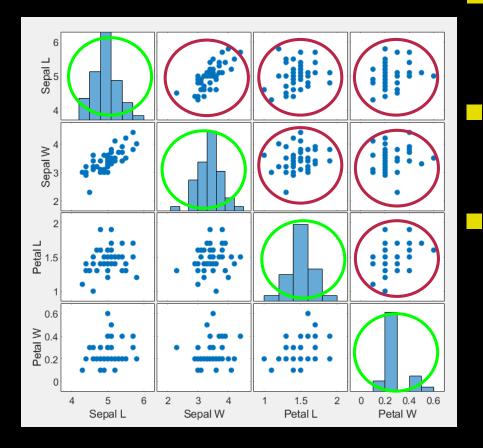
 Rotating and scaling the basis

 $\mathbf{Y} = \mathbf{P}\mathbf{X}$

So it will have

$$\mathbf{C}_{\mathbf{Y}} \equiv \frac{1}{n} \mathbf{Y} \mathbf{Y}^T$$

Goals



The covariance matrix

 $\mathbf{C}_{\mathbf{Y}} \equiv \frac{1}{n} \mathbf{Y} \mathbf{Y}^T$

Should be as diagonal as possible

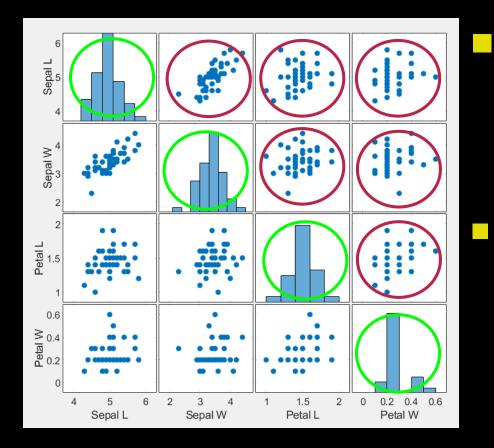
We do this by

$\mathbf{Y} = \mathbf{P}\mathbf{X}$

Where **P** are the principal components

·>

Computing the principal components

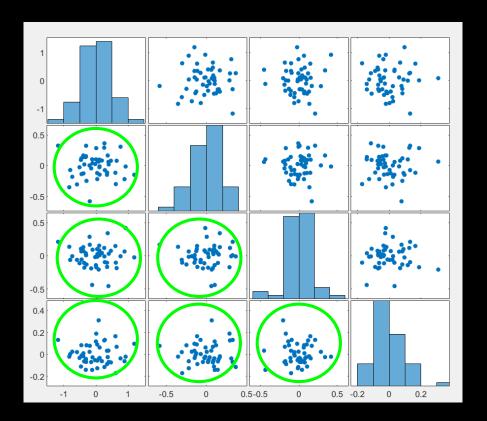


The Principal Components of **X** are the eigenvectors of

$$\mathbf{C}_{\mathbf{X}} \equiv \frac{1}{n} \mathbf{X} \mathbf{X}^{T}$$

The i'th diagonal value of C_Y is the variance along principal component number i

New covariance matrix for Iris data



Covariance: 0

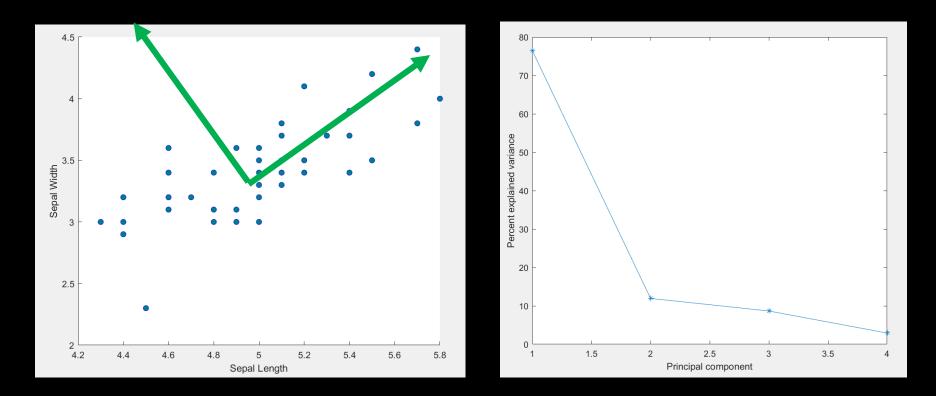
The principal component are found and

$\mathbf{Y} = \mathbf{P}\mathbf{X}$

With the covariance matrix

 $\mathbf{C}_{\mathbf{Y}} \equiv \frac{1}{n} \mathbf{Y} \mathbf{Y}^T$

Explained variance



One component explains 75% of the total variation – so for each flower we can have one number that explains 75% percent of the 4 measurements!

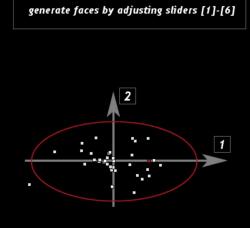
What can we use it for? Classification

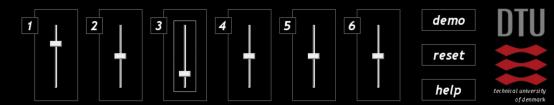
7 Based on one value instead of 4

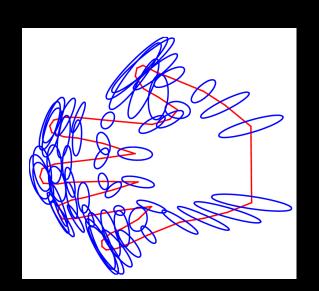
2024

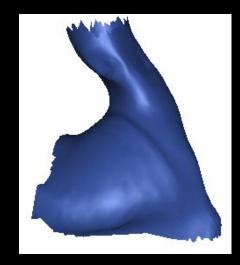
What can we use it for?

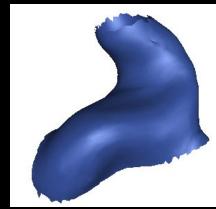
Many more examples in the course











Final note – practical estimation of covariance matrix

$$\mathbf{C}_{\mathbf{X}} \equiv \frac{1}{n} \mathbf{X} \mathbf{X}^{T}$$

In practice n-1 is used instead of n for exercises and in the exam.

$$\mathbf{C}_{\mathbf{X}} \equiv \frac{1}{n-1} \mathbf{X} \mathbf{X}^T$$

